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Abstract 

We generated exact probability distributions for sample sizes up to 35 in each of three groups 

( 105N  ) and up to 10 in each of four groups ( 40N  ). We provided a portion of these exact 

probability tables and compared the exact distributions to the chi-square, gamma, and beta 

approximations. The beta approximation was best in terms of the root mean squared error. At 

specific significance levels either the gamma or beta approximation was best. These results 

suggest that the most common approximation, the chi-square approximation, is not a good 

choice, though for larger total sample sizes and equal numbers in each group, any of these three 

approximations are reasonable. For sample sizes up to 105, we can now provide exact tables that 

negate the use of an approximation. 
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A comparison of the Exact Kruskal-Wallis Distribution to  
Asymptotic Approximations for All Sample Sizes Up to 105 

 

Kruskal and Wallis's (1952) rank-based test of location equality for three or more groups 

may be among the most useful of available hypothesis testing procedures for behavioral and 

social science research. It is also a relatively popular method. A recent search on APA PsycNet 

for “Kruskal-Wallis” returned 268 results whereas the search term “hierarchical linear models” 

returned only 233 results, after limiting the search to peer-reviewed journal articles published 

between 2000 and 2011. The popularity of the Kruskal-Wallis test may be attributed to its 

usefulness in a variety of disciplines such as education, psychology, and medicine. It is also 

suitable for, and has been applied to, a wide array of topics such as the validity of educational or 

psychological measures (Armstrong, MacDonald, & Stillo, 2010; Jang, Chern, & Lin, 2009; 

Rajasagaram, Taylor, Braitberg, Pearsell, & Capp, 2009; Tarshis & Huffman, 2007; Yin & 

Shavelson, 2008), teacher characteristics (Finson, Pedersen, & Thoms, 2006; Gömleksiz & 

Bulut, 2007), child development (Belanger & Desrochers, 2001), and adolescent behavior and 

learning disabilities (Plata & Trusty, 2005; Plata, Trusty, & Glasgow, 2005).  

Most applications of the Kruskal-Wallis test use a large-sample approximation instead of 

the exact distribution. Indeed, none of the articles previously cited report use of an exact test and 

almost all of them report use of the chi-square approximation even though other approximations 

exist. Statistical packages such as SPSS and R default to the chi-square approximation and only 

offer the exact distribution for very small sample sizes. Unfortunately, very little is known about 

the veracity of the chi-square and other approximations for total sample sizes beyond about 

fifteen participants. This limitation is largely due to the lack of exact probability tables for 
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moderate to large sample sizes. To overcome this limitation, we recently extended the exact 

probability tables to a total sample size of 105 participants as explained below. The purposes of 

this paper are to (a) share a portion of our exact probability tables1, and (b) examine three large 

sample approximations with respect to the exact distribution. 

The Kruskal-Wallis Test 

Parametric methods, along with the requirement for a stronger set of assumptions, 

continue to dominate the research landscape despite convincing studies that call into question the 

wisdom of making such assumptions (Micceri, 1989). Replacing original scores with ranks does 

not inherently lead to lower power, as one might suppose, but rather can result in a power 

increase at best and a slight power loss, at worst. This has been verified using both Pitman and 

finite efficiency indices (Hettmansperger, 1984). 

A second criticism of nonparametric procedures, in general, and rank-based procedures, 

in particular, is that critical values or p-values are either difficult to compute or that tables of 

critical values are limited. Unlike the power myth, this criticism has some basis in reality. For 

example, when Kruskal and Wallis (1952) introduced their test, they provided exact probability 

tables for samples with five or less in each of three groups. Obviously such tables have limited 

value, though the way out of this predicament is to derive approximations that can be used when 

the table size is exceeded. Kruskal and Wallis derived three such approximations based on the 

chi-square, incomplete-gamma, and incomplete-beta distributions. 

Most research on the Kruskal-Wallis statistic (H) has focused on comparing its 

performance to one-way analysis of variance (e.g. Boehnke, 1984; Harwell, Rubinstein, Hayes, 

& Olds, 1992) or evaluating its assumptions (e.g.Vargha & Delaney, 1998). Little has been done 

                                                            
1 The complete tables for significance levels of .1, .05, and .01 span over 200 pages. They are available upon 
request from the authors. Complete exact distributions are also available but they require over 1 terabyte of disk 
storage.  



 A comparison of the Exact Kruskal-Wallis 5 
 

 

to study the efficacy of these approximations yet such study should be paramount because other 

types of studies, including those referenced above, rely on these approximations. In short, if the 

approximations for the percentiles of H are problematic, studies that use approximate instead of 

exact cumulative probabilities for H are suspect. 

It is really no surprise that there is a paucity of research on the large-sample 

approximations. Exact probability tables of the Kruskal-Wallis statistic have slowly progressed 

over the years. Kruskal and Wallis (1952) provided exact probability tables when they proposed 

their test, but their tables were limited to 15N   where N is the total sample size. Iman, Quade, 

and Alexander (1975) published more extensive exact probability tables for H, but even for their 

tables, none of the sample sizes exceeded eight for any of the groups. More recently, exact 

probabilities have been computed for samples as large as 45N   (Spurrier, 2003) and 60N   

(Meyer & Seaman, 2006).  

Commercial software for computing exact probabilities for nonparametric statistics is 

more limited than the existing probability tables. SPSS Exact Tests does not provide exact 

probabilities for H for sample sizes larger than 15 (Mehta & Patel, 2010) and we were unable to 

obtain exact cumulative probabilities for H from StatXact 4.0 (Cytel, 2000) with samples as 

small as 30 participants. The statistical package R (R Development Core Team, 2011) includes a 

Kruskal-Wallis test in its base package but this test uses the chi-square approximation. 

Documentation for the R add-on package muStat (Wittkowski & Song, 2010) suggests it can 

provide exact probabilities for the Kruskal-Wallis test but this assertion is only true when there 

are no more than two groups. As such, muStat does not compute exact probabilities in cases 

where the Kruskal-Wallis test is most useful; it does not compute exact probabilities when there 

are more than two groups. Our comprehensive review of commercially available software did not 



 A comparison of the Exact Kruskal-Wallis 6 
 

 

find any that provided exact critical or p values for even moderately sized samples. Indeed, even 

when software documentation claims to provide such values, the software resorts to Monte Carlo 

or theoretical distribution approximations for all but the smallest sample size arrangements. This 

is understandable given the resource-intensive nature of computing exact values, as we describe 

below. 

Exact probability values are necessary to study the veracity of approximations, yet 

approximations are only necessary when exact probability values do not exist. As the exact 

probability tables cover an increasing larger sample size, the chi-square, gamma, and beta 

approximations can be studied more rigorously to support inferences about their usefulness in 

settings that involve even larger sample sizes. Our purpose in this paper is to provide critical 

values for H with even larger samples and then to compare these with approximate values. At the 

time of this writing, we have created the exact probability distributions for sample sizes up to 35 

participants in each of three groups ( 105N  ) and 10 participants in each of four groups 

( 40N  ). We created the tables for all possible configurations of unequal and equal sample 

sizes.  

The H Statistic and Related Quantities 

Consider k independent samples from distributions with CDFs of 

1 2( ), ( ), , ( )kF x F x F x      , where i  is a location parameter for population i. We wish to 

know if there are differences in location among the k populations, so we can test the null 

hypothesis  

 0 1 2: kH      (1) 

against the alternative  

 1 :  for at least one .i jH i j    (2) 
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This location parameter is general and merely denotes a shift of the otherwise common 

distribution functions. In practice, a test of the above null hypothesis is usually considered a test 

of median (or mean) equality and is therefore similar to the one-way analysis of variance 

(ANOVA) as a test of means. Unlike the ANOVA test, which requires a specific form of 

distribution identity, namely normal distributions, the Kruskal-Wallis test merely assumes 

continuous populations that might differ in location, rather than shape. 

Kruskal and Wallis (1952) derived a test of the above hypothesis using the H statistic 

which can be viewed as the nonparametric analog of the F statistic in this one-way design. Given 

1, ,i k  independent random samples, each with in  observations, all 
1

k

i
i

n N


 observations are 

ranked together from lowest to highest. The Kruskal-Wallis H statistic is based on the sum of 

ranks for each sample, iR , and is given by,  
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The expected value, variance, and maximum value of H are  

 1,k    (4) 
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 (6) 

respectively (Kruskal & Wallis, 1952; Kruskal, 1952). 

To conduct an α-level test of the null hypothesis of location equality, H can be compared 

to the 100(1 ) percentile of H so that the 0H  is rejected if the observed value of H equals or 
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exceeds this percentile. As explained below, finding the correct percentile of H is not a trivial 

matter so that tables of these values are needed. In the absence of such tables, an approximation 

can be used. Kruskal and Wallis (1952) proposed three such approximations that we describe and 

critique later in this paper. 

Computation of Exact Probabilities 

Computational intensity is a primary drawback of exact procedures, even with the 

availability of faster processors. Consider, for example, the three-condition setting 

with 1 2 3 20n n n   (this notation indicates three groups with 20 participants in each group). 

The computation of H requires ranking all 60 observations, from 1 to 60. A straight-forward 

method for computing a critical value for the test of the location hypothesis using H as the test 

statistic would be to calculate H for all 265.8 10  permutations of the 60 ranks into the three 

conditions. We would also need to store at least the largest values of H so that we could then 

determine the critical value based on determining the cut-off for some percentage (e.g. 5%) of 

these largest values. 

To overcome this limitation of exact procedures, Iman et al. (1975) noted that for 

1, ,i k   groups with fixed sample sizes, the distribution of H depends only on the rank 

sums 1, , kr r . Therefore, the distribution of H may be obtained from the distribution of rank 

sums; there is no need to permute all observations.  

For k independent groups, the exact probability of the rank sums 1, , kr r  is given by  

 1 1
1 1

1

( , , ) ( , , )
( , , ) ,

!/ ( ! !)
k k

k k
k

r r W n n
P R r R r

N n n

 
   


 (7) 

where 1 1( , , ) ( , , )k kr r W n n   denotes the number of ways to obtain the rank sums 1, , kr r  from 

the sample sizes 1, , kn n . A significance level for the Kruskal-Wallis statistic may be obtained 
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by summing Equation 7 for all rank sums that result in a value of H that is greater than or equal 

to the observed value, h. 

Iman et al. (1975) described a recursive algorithm for obtaining the frequencies 

1 1( , , ) ( , , )k kr r W n n  that depends on the largest observation's group number. For 3k  , the 

recursion is given by,  

 

       
 
 

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

r , r , r W n ,n ,n  r N, r  , r W n 1,n  , n

r , r N, r W(n ,n 1,n )

r , r , r N W(n ,n ,n 1)

  

  

  

 (8) 

This algorithm is relatively fast, but it requires a large amount of storage. Frequencies for all 

possible permutations of the rank sums, (i.e. the 1 1( , , ) ( , , )k kr r W n n  ) must be stored on a 

computer's hard drive to implement the recursion. 

We implemented the Iman et al. (1975) algorithm for computing the exact probability 

distribution in Java standard edition 1.6. Java has the advantage of offering BigInteger and 

BigDecimal classes. The BigInteger class has no limit on the size of the integer, and the 

BigDecimal class can compute decimals to an arbitrary level of precision. This is important 

because it is necessary to precisely track the number of permutations, even if you do not have to 

actually compute these permutations. In order to avoid overflow from repeating decimals, some 

level of precision must be specified for the BigDecimal class. We used the IEEE 754R 

Decimal128 format, which permits a precision of 34 significant decimal places. By comparison, 

the integer primitive type only allows integers as large as 92.47 10 and the double primitive type 

only allows for a precision of 15 significant decimal places. 
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Expanded tables of H critical values and exact p-values for equal sample sizes are listed 

in Table 1 for 3k  groups and in Table 2 for 4k  groups2.  

Approximations to the Exact H CDF 

Three approximations described by Kruskal and Wallis (1952) are special cases of the 

gamma distribution. The most common approximation is based on a 2 ( 1)k  distribution, and 

the proof of this approximation is provided by Kruskal  (1952). Approximations based on the 

incomplete- Gamma(α,β)  and incomplete- Beta( , )  distributions were described by Kruskal 

and Wallis, and Wallace (Wallace, 1959). The latter two approximations are achieved by 

matching the moments of the distribution and require more calculations than the chi-square 

approximation. The parameters of the gamma approximation are 2 2/ ,    and 2 /   , 

where   and 2  are defined by Equations 4 and 5. The beta approximation is for /H  , rather 

than H , and its parameters are  

 

2

2

( )

,

    


  


  
  

 
 

  
 

 

which requires Equations 4 through 6 (Kruskal & Wallis, 1952). Probabilities for the chi-square, 

gamma, and beta approximations were obtained from the JSci v0.93 Java library (JSci e-group, 

2004).  

Of these three approximations, the chi-square is the most common and it is implemented 

in numerous statistical packages. However, limited studies have shown the gamma and beta 

approximations to be better approximations to the exact distribution in most circumstances 

                                                            
2 The complete tables are prohibitively large to include in this manuscript, but are available on request from either of 
the authors. 
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(Kruskal & Wallis, 1952; Spurrier, 2003; Wallace, 1959). The likely reason for this disparity is 

the computational burden of implementing the gamma and beta approximations relative to the 

chi-square approximation that traditionally existed. Exact probability tables for increasingly 

larger sample sizes negate the use of any approximation, but when they are needed, all 

approximations can be effortlessly implemented on modern computers. 

Existing studies evaluating asymptotic approximations are limited to sample sizes smaller 

than 45N   (Kruskal & Wallis, 1952; Spurrier, 2003; Wallace, 1959) and only evaluate the 

approximation at specific significance levels (e.g. .1, .05, and .01) rather than the entire 

distribution (Spurrier; Wallace). The study described below improved on these limitations by 

involving much larger sample sizes and the entire exact distribution. 

Method 

Methods for Studying the Proposed Approximations 

Although exact tables negate the need to use any approximation, existing tables are still 

limited to small and moderate sample sizes, especially when the number of conditions exceeds 

three. Approximate percentiles of H are still needed for larger sample sizes. An additional 

advantage to creating more extensive tables, aside from the obvious benefits of obtaining exact 

distributions, is that these can be used to verify the value of a proposed approximation as well as 

to provide a standard by which to compare approximations to one another. 

We conducted a study of the three approximations proposed by Kruskal and Wallis 

(1952) for sample sizes up to 1 2 3 35n n n    and 1 2 3 4 10n n n n    . We studied all 

possible sample size configurations (i.e. equal and unequal sample sizes) up to 35 participants in 

one or more groups for three groups and up to 10 participants in one or more groups for four 

groups. To assess the veracity of an approximation, we used two primary methods. First, the 
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similarity of the approximate and exact CDFs was evaluated with the root mean squared error 

(RMSE). The RMSE provides a single value for each sample size configuration studied3. We 

defined the RMSE as  

 2

1

1
RMSE [ ( ) ( )] ,

m

j j
j

A H E H
m 

   (9) 

where (·)A  is the approximate cumulative probability, and (·)E  is the exact cumulative 

probability of jH . The summation was over all m observed values of H in the exact distribution. 

Each sample size configuration yields a distinct CDF for H. The RMSE is an index of 

discrepancy between the entire exact and approximate CDF for each sample size configuration. 

The second method we used to assess the approximations was to assess the Type I error 

rate of each approximation at specific probability values. To do this, we obtained the 1p    

quantile of the approximate CDF, 1( )q A p . We then obtained the exact p-value of this 

quantile, ( )E q , by selecting the p-value for the smallest value of H from the exact distribution 

that was greater than or equal to 1( )A p . Finally, we computed a Type I error rate discrepancy 

measure as ( )E q  . For example, if the 95th percentile on the chi-square distribution is 

actually the 90th percentile on the exact H distribution, this yields a discrepancy score of .05. In 

our scheme, positive discrepancy scores indicate liberal Type I error rates while negative 

discrepancy scores are associated with conservative Type I error rates. 

We plotted both the RMSE and the error rate discrepancy scores as a function of total 

sample size and the inequality of group sample sizes. The first type of plot is important for 

understanding if it is reasonable to make inferences once we get beyond the sample sizes 

                                                            
3 The exact distribution is discrete. Therefore, we chose the RMSE rather than the mean integrated squared error 
to compare the asymptotic and exact distributions. 
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accommodated by the exact tables. In the second type of plot, we used the standard deviation of 

sample sizes as an indicator of the inequality of sample sizes. Large standard deviations 

represent groups with very different sample sizes, whereas small standard deviations represent 

groups with similar sample sizes. A standard deviation of zero represents the case where sample 

sizes are equal among groups. Note that our use of the standard deviation is not meant to imply 

that the sample sizes are random variables. It merely refers to the amount of inequality among 

group sample sizes. With the sample size standard deviation plots, we could determine if the 

RMSE and error rate discrepancies were affected by various degrees of group sample size 

inequalities. 

We should note that we did not evaluate whether or not the asymptotic approximations 

were close to the nominal significance level. Our reasoning is that, for a given sample size 

configuration, the chi-square, gamma, and beta approximations are approximations of the exact 

Kruskal-Wallis distribution. They are not approximations of the nominal significance level. 

Therefore, the standard for comparison was the exact distribution, not the nominal significance 

level.  

Results 

Root Mean Squared Error 

We computed the weighted average and standard deviation of RMSE values for each 

approximation, where the weight is the number of unique H values in the exact distribution for 

the particular combination of group sample sizes. As shown in Table 3, the RMSE values are 

smallest for the beta approximation and largest for the chi-square approximation. The beta and 

chi-square approximation RMSE values are also the least and most variable, respectively. RMSE 

values for the gamma approximation are consistently between the chi-square and beta 

approximations. 
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Figure 1 illustrates weighted kernel regression estimates of the RMSE values for each 

distribution as a function of total sample size, where the weight is the number of unique H values 

in the exact distribution for the particular combination of group sample sizes. These plots show 

that all three approximations are very good for larger sample sizes, but that the RMSE 

approaches zero fastest for the beta approximation followed by the gamma approximation. 

Differences in RMSE for the approximations are increased when the number of groups is 

increased from three to four, but the order of results is the same. RMSE goes to zero fastest for 

the beta approximation, followed by the gamma and chi-square approximations. 

Figure 2 is a plot of RMSE values plotted as a function of the inequality of group sample 

sizes (i.e. the standard deviation of the sample sizes). As the inequality among sample sizes 

increases, the beta, gamma, and chi-square approximations become less accurate approximations 

of the exact distribution. However, the beta approximation is affected least by the sample size 

inequality followed by the gamma approximation. The chi-square approximation appears to be 

sensitive to differences in group sample size. Figure 2 again suggests that the beta approximation 

is the best, followed by the gamma and then the chi-square approximations. 

Error Rate Discrepancy Scores 

Table 4 lists the mean error rate discrepancy scores. Not surprisingly, given the results for 

the RMSE, mean discrepancy scores for the beta approximation are closer to zero than for the 

other two approximations. Moreover, the discrepancy scores are more variable for the chi-square 

approximation than for either of the other two approximations. A bit more surprisingly, the chi-

square approximation outperforms the gamma approximation with three groups and a 

significance level of .1.  

Figure 3 shows weighted kernel regression estimates of error rate discrepancy scores as a 

function of total sample size. This graph shows that all approximations improve as total sample 
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size increases. In addition, the chi-square approximation is consistently conservative and 

sometimes extremely so. Beta and gamma approximations can be either liberal or conservative. 

For sample sizes less than 8, the beta approximation is notably liberal. However, this effect is 

largely due to a handful of cases. If the total sample size is less than eight and the sample size 

configuration involves at least one group with a sample size of one, a high error rate discrepancy 

is observed for the beta approximation. Otherwise, the beta approximation error rate discrepancy 

is closer to zero than either the gamma or chi-square approximations. 

Figure 4 reinforces the results observed thus far. Beta and gamma approximations are far 

less sensitive to sample size inequalities than the chi-square approximation. Indeed, the chi-

square approximation error rate becomes increasingly discrepant from the exact distribution as 

group sample sizes become more unequal. 

Discussion 

We generated exact Kruskal-Wallis distributions for three- and four-groups. We then 

compared the exact CDFs to three approximations. In most cases the beta approximation 

provides percentiles that are close to the exact values, with exceptions occurring when the total 

sample size is less than eight. The fact that the beta approximation error discrepancy scores show 

it to be the closest approximation to the exact is consistent with the finding that this 

approximation also yielded the smallest RMSE. The RMSE is calculated across the entire exact 

distribution, unlike the discrepancy scores which we only calculated in the region of commonly 

used critical values. In those few cases where the beta approximation did not perform well, the 

gamma approximation is the most accurate approximation.  

The three-group results were exaggerated in the four-group conditions and we are 

suspicious that this trend might continue for larger numbers of groups; a suspicion that we will 
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study in future research. Fortunately, all of the approximations are very good when the total 

sample size is large and when the sample sizes are equal or near equal across conditions. 

The reason we believe these results to be fortunate is because for smaller sample sizes 

( 105)N  we can provide exact tables, which negates the need for approximations. What we are 

more concerned about is what the performance of the approximations in these smaller-sample 

conditions might imply about conditions for which there are still no exact tables. Our findings 

suggest that in such conditions the beta approximation is best, at least for three- and four-group 

conditions. The ubiquitous chi-square approximation was never the most accurate approximation 

to the exact distribution. Our results are consistent with those reported by others (Kruskal & 

Wallis, 1952; Spurrier, 2003; Wallace, 1959). In light of these results and the availability of 

modern computers, we discourage the use of the chi-square approximation and suggest that the 

beta approximation should be the new standard for larger study conditions that exceed the limits 

of our expanded exact critical value tables. 
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Table 1 
Critical Values (CV) and Exact p-values at Significance Levels of .10, .05, and .01 for three 
groups and up to 35 participants in each group 

 .10 .05 .01 
Sample Sizes CV p-value CV p-value CV p-value 

5, 5, 5 4.560000 0.099520 5.780000 0.048777 8.000000 0.009459 
6, 6, 6 4.538012 0.099849 5.719298 0.049438 8.222222 0.009942 
7, 7, 7 4.593692 0.099327 5.818182 0.049108 8.378479 0.009924 
8, 8, 8 4.595000 0.099331 5.805000 0.049733 8.465000 0.00906 
9, 9, 9 4.582011 0.099584 5.844797 0.049946 8.564374 0.009982 

10, 10, 10  4.583226 0.099717 5.855484 0.049897 8.640000 0.009957 
11, 11, 11 4.587263 0.099340 5.847351 0.049970 8.670880 0.009959 
12, 12, 12  4.582583 0.099758 5.875375 0.049969 8.726727 0.009988 
13, 13, 13 4.583432 0.099826 5.880473 0.049987 8.756213 0.009986 
14, 14, 14 4.581870 0.099902 5.87485 0.049968 8.793545 0.009998 
15, 15, 15 4.592077 0.099967 5.906087 0.049957 8.814686 0.009997 
16, 16, 16 4.592474 0.099986 5.906250 0.049930 8.852679 0.009990 
17, 17, 17 4.587171 0.099853 5.908970 0.049989 8.870375 0.009984 
18, 18, 18 4.591246 0.099993 5.911560 0.049989 8.890685 0.009993 
19, 19, 19 4.586493 0.099985 5.919190 0.049939 8.905531 0.009998 
20, 20, 20 4.588852 0.099921 5.920328 0.049991 8.924262 0.009998 
21, 21, 21  4.594388 0.099927 5.928855 0.049996 8.935658 0.009993 
22, 22, 22 4.593314 0.099934 5.928950 0.049983 8.954484 0.009997 
23, 23, 23 4.590224 0.099966 5.928382 0.049998 8.960302 0.009998 
24, 24, 24 4.591514 0.099969 5.932839 0.049982 8.971081 0.009997 
25, 25, 25 4.590989 0.099998 5.933305 0.049998 8.980716 0.010000 
26, 26, 26 4.593064 0.099986 5.937982 0.049985 8.992285 0.009998 
27, 27, 27 4.594199 0.099992 5.938372 0.049994 8.997691 0.009998 
28, 28, 28 4.593998 0.099997 5.943217 0.049997 9.006603 0.009999 
29, 29, 29 4.594855 0.099968 5.942709 0.049999 9.012972 0.009994 
30, 30, 30  4.594579 0.099989 5.944908 0.049997 9.020952 0.009998 
31, 31, 31 4.595302 0.099989 5.945225 0.049998 9.025262 0.010000 
32, 32, 32 4.596730 0.099980 5.947890 0.049996 9.032941 0.009997 
33, 33, 33 4.595702 0.099981 5.948650 0.049998 9.038090 0.010000 
34, 34, 34 4.596499 0.099991 5.950482 0.049994 9.042295 0.010000 
35, 35, 35 4.595025 0.099999 5.951914 0.049998 9.047547 0.009998 

Note: Critical values are the smallest value of H in the cumulative distribution for which the p-value is less than or 
equal to the nominal significance level. 
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Table 2 
Critical Values (CV) and Exact p-values at Significance Levels of .10, .05, and .01 for four 
groups and up to 10 participants in each group 

 .10 .05 .01 
Sample Sizes CV p-value CV p-value CV p-value 

2, 2, 2, 2 5.666667 0.076190 6.166667 0.038095 6.666667 0.009524 
3, 3, 3, 3 5.974359 0.099843 6.897436 0.045720 8.435897 0.009199 
4, 4, 4, 4 6.088235 0.099001 7.235294 0.049217 9.286765 0.009990 
5, 5, 5, 5 6.097143 0.099365 7.377143 0.049506 9.800000 0.009942 
6, 6, 6, 6 6.120000 0.099862 7.440000 0.049909 10.100000 0.009999 
7, 7, 7, 7 6.141450 0.099667 7.492611 0.049839 10.292048 0.009984 
8, 8, 8, 8 6.161932 0.099732 7.542614 0.049887 10.434659 0.009997 
9, 9, 9, 9 6.161161 0.099976 7.570571 0.049979 10.539540 0.009986 

10, 10, 10,10 6.172683 0.099988 7.598049 0.049972 10.622927 0.009994 
Note: Critical values are the smallest value of H in the cumulative distribution for which the p-value is less than or 
equal to the nominal significance level. 

 



 A comparison of the Exact Kruskal-Wallis 22 
 

 

Table 3 
Descriptive Statistics of RMSE for All Sample Size Configurations 

Groups Distribution x  ̂  

Three Chi-square 0.0014 0.0019 

 Gamma 0.0011 0.0010 

 Beta 0.0005 0.0007 

    

Four Chi-square 0.0087 0.0060 

 Gamma 0.0051 0.0023 

 Beta 0.0015 0.0013 
Note: Statistics weighted by the number of H in each exact 
distribution. 
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Table 4 
Mean Error Rate Discrepancy for All Sample Size Configurations (Standard Deviation in 
Parentheses) 

  Significance Level 

Groups Distribution .10 .05 .01 

Three Chi-square -0.0010 (0.0019) -0.0020 (0.0017) -0.0015 (0.0007) 

 Gamma 0.0019 (0.0011) 0.0007 (0.0005) -0.0004 (0.0003) 

 Beta -0.0008 (0.0009) -0.0003 (0.0004) 0.0002 (0.0002) 

     

Four Chi-square -0.0081 (0.0062) -0.0101 (0.0047) -0.0054 (0.0013) 

 Gamma 0.0050 (0.0018) 0.0008 (0.0009) -0.0020 (0.0008) 

 Beta -0.0014 (0.0015) -0.0002 (0.0008) 0.0006 (0.0006) 
Note: Statistics weighted by the number of H in each exact distribution. 
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Figure Captions 

Figure 1. Weighted Kernel Regression Estimate of RMSE by Total Sample Size 

Figure 2. Weighted Kernel Regression Estimate RMSE by Sample Size Standard Deviation 

Figure 3. Weighted Kernel Regression Estimate Error Rate Discrepancy by Total Sample Size 

Figure 4. Weighted Kernel Regression Estimate Error Rate Discrepancy by Sample Size 

Standard Deviation 
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Figure 1. Weighted Kernel Regression Estimate of RMSE by Total Sample Size 
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Figure 2. Weighted Kernel Regression Estimate of RMSE by Sample Size Standard Deviation 
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Figure 3. Weighted Kernel Regression Estimate of Error Rate Discrepancy by Total Sample Size 
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Figure 4. Weighted Kernel Regression Estimate of Error Rate Discrepancy by Sample Size 

Standard Deviation 

 

 

 

 


